CAR-CIK for ALL relapse after allogeneic transplantation

Alessandro Rambaldi

Cuneo, May 19th 2023

Disclosures

Amgen, Kite-Gilead, Novartis, Celgene-BMS, Sanofi,

Jazz, Pfizer, Astellas, Abbvie, Incyte, Omeros, Roche

Final results of the national treatment program: the GIMEMA 1913 trial

Bassan R et al.: EHA 2022 Vienna; abstr # S113

CAR-T cells in BP-ALL: where do we stand in adults?

CHIMERIC ANTIGEN RECEPTOR T-CELL THERAPY IN ADULTS WITH B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA

Punita Grover et al. Blood Adv, 2022

KTE-X19 for relapsed or refractory adult B-cell ALL: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study

A

- The median age of treated patients was 40 years
- 71% had complete remission
- median duration of remission was 12.8 months
- median RFS was 11.6 months
- median OS was 18.2 months

Among responders

- the median OS was not reached
- 97% had MRD negativity
- 10 patients (18%) received allo-SCT after KTE-X19
- The most common adverse events of grade 3 or higher were anaemia (49%) and pyrexia (36%)
- Two grade 5 events occurred (brain herniation and septic shock)
- CRS of grade 3 or higher occurred in 24% and neurological events of grade 3 or higher occurred in 25%

- Patients with CR (n=31) 14-6 (9-6-NE) - Patients with CR (n=21) NR (10-3-NE) - Patients with CRi (n=8) 8.7 (1.0-12.8) - Patients with CRi (n=8) 5.7 (1.0-12.8) - Patients with CR or CRi (n=39) - Patients with CR or CRi (n=39) 12-8 (8-7-NE) 12-8 (9-4-NE) 100 -6 80 80 60 60 40 20 O Cans 10 11 9 10 11 12 13 14 15 16 1 Time since first CR or CRi (months) Time since first CR or CRi (months) Number at risk 31 26 19 18 17 14 14 14 14 14 11 CR CR 8 5 4 4 4 4 3 2 1 3 3 2 1 0 CR or CRi 39 31 23 22 21 18 17 17 17 16 13 31 29 28 25 23 22 20 19 16 10 8 C Median relapse-free survival Median overall survival (95% CI), months (95% CI), months Patients with CR or CRi (n=39) Patients with CR or CRi (n=39) 14-2 (11-6-NE) NR (16-2-NE) Patients without CR or CRi (n=16) 0-0 (NE-NE) Patients without CR or CRi (n=16) 2.4 (0.7–NE) - All treated patients (N=55) 11-6 (2-7-15-5) - All treated patients (N=55) 18-2 (15-9-NE 100 60 60 40 40 æ 20 5 6 7 8 9 10 11 12 13 14 15 16 17 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time since KTE-X19 infusion (months) Time since KTE-X19 infusion (months) Number at risk CR or CRi 39 39 33 24 22 22 18 17 17 17 17 16 11 7 7 39 39 39 39 38 38 38 38 36 32 32 32 29 24 23 19 16 13 6 2 2 2 1 0 3 3 0 55 49 48 44 43 43 43 43 41 36 35 35 31 26 25 20 17 14 7 2 2 2 1 0 No CR or CRi 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Treated population 55 39 33 24 22 22 18 17 17 17 17 16 11

Median duration of remission

(95% CI), months

R

Median duration of remission

(95% CI), months

Shah BD Lancet 2021; 398: 491–502

HCT may improve EFS following CD19 CAR in some published studies

Background for new allogeneic CARs

- Chimeric antigen receptor (CAR) T cell immunotherapy has achieved complete remission and durable response in highly refractory patients.
- Results are particularly exciting in DLBCL and pediatric ALL. The outcome in adult ALL are less impressive particularly in patients relapsing after allogeneic stem cell transplantation.
- Furthermore, patient-derived CAR T cell production may be limited due to failure to collect sufficient T cells or to expand products in selected patient populations who received intensive chemotherapy
- Patients with high leukemic blast contamination might benefit from healthy allogeneic lymphoid cells.
- Ready to go, off the shelf allogeneic CARs represent an ambitious goal of the ongoing research

A non-viral platform to generate allogeneic CAR-T cells

Non-Viral Sleeping Beauty (SB) Transposon System

Electroporation

Magnani CF et al : Hum Gene Therapy 2018; Magnani CF et al : Oncotarget (2016)

SLEEPING BEAUTY-ENGINEERED CARCIK CELLS ACHIEVE ANTI-LEUKEMIC ACTIVITY WITHOUT SEVERE TOXICITIES

Magnani, J Clin InvestJ Clin Invest. 2020;130(11):6021-6033

Manufacturing data: cell expansion and composition

Magnani C et al.: J Clin Invest. 2020. https://doi.org/10.1172/JCI138473

Early peak of CAR-CIK19

ID Patient: **PUC2002001** Time Point: **Day 7** (28/03/2023)

CARCIK-CD19 mediated anti leukemic activity on extrahematologic disease

Patient #21020014: CT scan before and after CARCIK-CD19

07 June 2019: Relapse post Allo-HSCT presenting liver adenopathy

27 June 2019:

- AST/ALT: 157/287 UI,
- γGT: 1183 UI
- Bilirubin: 18.8 mg/dl

12 September 2019, day +44 after CARCIK-CD19 infusion: - AST/ALT: 12/58 UI,

- γGT : 82 UI,
- Bilirubin 0,8 mg/dl

CARCIK-CD19 mediated anti leukemic activity on extrahematologic disease

Patient #21020014: Flow Cytometry of pleural effusion

Baseline Massive leukemic infiltration

day +10 expansion of CARCIK-CD19 cells

CD19 APC-A

-102 0 109

CARCIK - F

CD19HIS APC-A

-10² 0 10²

LAIP B-ALL - Mononucleat

10³ 10⁴ CD10 PE-Cv7-A

CARCIK-CD19 mediated anti leukemic activity on extrahematologic disease

Patient #21020018: Flow Cytometry of CSF

Baseline Massive leukemic infiltration

day +10 expansion of CARCIK-CD19 cells

day +30 Persistence of CARCIK-CD19cells and leukemic clearance

CARCIKCD19 in adult ALL

Characteristics	All patients (22)
Age, median yo	40 (26 - 67)
Ph positive ALL, no. (%)	8 (36%)
Previous lines of treatment 2, No (%) 3-5, No (%) >5, No (%)	3 (13) 14 (63) 5 (22)
Bridge therapy Inotuzumab, No (%) Blinatumomab, No (%) Low intensity Chemotherapy, No (%) TKI with or without Chemotherapy, No (%)	5 (22) 1 (4) 14 (63) 2 (9)
Pre-infusion bone marrow blasts <5%, (%) ≥5%, (%)	11 (52) 10 (48)

RESULTS OF SAFETY

Events	Patients (n°22)
CRS, n (%) Grade 1 Grade 2	3 (13%) 3 (13%)
Grade ≥ 3	0
ICANS n (%)	
Grade ≥ 3	2 (9%)
Infection, n (%)	
Grade 1	1 (4%)
Grade 3	2 (9%)
Grade 4	2 (9%)
GVHD n (%) Grade 1-3	0

- No dose limiting toxicity was observed
- CRS and ICANS were observed in patients treated with the highest doses and were manageable
- Tocilizumab was used in 4 patients
- Although 8 out of 22 had experienced GVHD after the previous HSCT, secondary GVHD was never observed

CARCIK-CD19 in B-ALL post HSCT: selected adverse event

Events	Patients
CRS, n (%)	
Grade 1Grade 2Grade 3	4 (15%) 5 (19%) 0 (0%)
ICANS, n (%)	
Grade 3	2 (7%)
GvHD, n (%)	
Grade I-IV	0 (0%)
Infection, n (%)	
 Grade 1-2 Grade ≥ 3 	2 (7%) 7 (26%)
Prolonged cytopenia, n (%)	
Severe neutropenia, day 28 Severe thrombocytopenia, day 28	7 (32%) 17 (68%)

- no dose limiting toxicity was observed
- CRS and ICANS were observed in patients treated ٠ with the highest doses and were manageable
- Although 10 out of 27 had experienced GVHD after the previous HSCT, secondary GVHD was never observed
- 17 out of 25 patients remained with persistent ٠ cytopenia at day 28

CRS criteria (Lee et al. Blood. 2014); ICANS, immune-effector cell-associated neurotoxicity syndrome; severe neutropenia <500/mmc; severe thrombocytopenia <50000/mmc

S American Society *of* Hematology

Response data

- CR: 18/27 patients (66.7%, 95%CI=46-84%)
- CR: 16/21 patients (76.2%, 95%CI=53-92%) treated with the 2 highest doses
- Fourteen (77.8%) of the overall responders and 13 of the responders at the highest doses (81.3%) achieved MRD negativity
- The type of donor did not influence the achievement of CR 28 days post-infusion

51

American Society *of* Hematology

Disease Burden Affects Outcomes in Pediatric and Young Adult B-Cell Lymphoblastic Leukemia After Commercial Tisagenlecleucel: A Pediatric Real-World Chimeric Antigen Receptor Consortium Report

Schultz, LM et al.: J Clin Oncol 2021

RESPONSE RATE ACCORDING TO TUMOR BURDEN, EFFECTOR-TO-TARGET AND TIME-TO-PEAK

INOTUZUMAB OZOGAMICIN AS BRIDGING THERAPY

- Five adult patients who received inotuzumab had less than 5% BM blasts *before* CARCIK-CD19 infusion as compared to 6/15 (40%) of those who received other bridging therapies
- After CARCIK-CD19 infusion (Figure), all adult patients exposed to inotuzumab achieved a CR at day 28 as compared to 70% of those who received other bridging therapies

Main outcomes

Event free survival

S American Society *of* Hematology

CD3+ T cells and CARCIK-CD19 reconstitution

FT03CARCIK Phase 2: Flow-chart

ACKNOWLEDGMENTS

Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, BG and University degli Studi di Milano, Milan, Italy

Alessandro Rambaldi

Giuseppe Gritti **Federico Lussana** Silvia Ferrari Anna Grassi **Benedetta Rambaldi** Gian Maria Borleri

The Cell Therapy Lab, Gilberto Lanzani ASST Papa Giovanni XXIII, BG, Italy Martino Introna Chiara Capelli Elisa Gotti Josee Golay

Cell Factory- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy

Chiara Magnani Giuseppe Gaipa Daniela Belotti Giada Matera Benedetta Cabiati Stefania Cesana Valentina Colombo Michele Quaroni

Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy

Andrea Biondi Giuseppe Dastoli Ettore Biagi Sarah Tettamanti Chiara Buracchi Silvia Rigamonti Grazia Fazio Giovanni Cazzaniga

